An Electrostatic Interpretation of the Zeros of Paraorthogonal Polynomials on the Unit Circle

نویسنده

  • Brian Simanek
چکیده

We show that if μ is a probability measure with infinite support on the unit circle having no singular component and a differentiable weight, then the corresponding paraorthogonal polynomial Φn(z;β) solves an explicit second order linear differential equation. We also show that if τ 6= β, then the pair (Φn(z;β),Φn(z; τ)) solves an explicit first order linear system of differential equations. One can use these differential equations to deduce that the zeros of every paraorthogonal polynomial mark the locations of a set of particles that are in electrostatic equilibrium with respect to a particular external field.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The statistical distribution of the zeros of random paraorthogonal polynomials on the unit circle

We consider polynomials on the unit circle defined by the recurrence relation Φk+1(z) = zΦk(z)− αkΦk(z) k ≥ 0, Φ0 = 1 For each n we take α0, α1, . . . , αn−2 i.i.d. random variables distributed uniformly in a disk of radius r < 1 and αn−1 another random variable independent of the previous ones and distributed uniformly on the unit circle. The previous recurrence relation gives a sequence of ra...

متن کامل

Rank one perturbations and the zeros of paraorthogonal polynomials on the unit circle

We prove several results about zeros of paraorthogonal polynomials using the theory of rank one perturbations of unitary operators. In particular, we obtain new details on the interlacing of zeros for successive POPUC. © 2006 Elsevier Inc. All rights reserved.

متن کامل

First and second kind paraorthogonal polynomials and their zeros

Given a probability measure μ with infinite support on the unit circle ∂D = {z : |z| = 1}, we consider a sequence of paraorthogonal polynomials hn(z, λ) vanishing at z = λ where λ ∈ ∂D is fixed. We prove that for any fixed z0 6∈ supp(dμ) distinct from λ, we can find an explicit ρ > 0 independent of n such that either hn or hn+1 (or both) has no zero inside the disk B(z0, ρ), with the possible e...

متن کامل

Szegő Quadrature and Frequency Analysis∗

Abstract. A series of papers have treated the frequency analysis problem by studying the zeros of orthogonal polynomials on the unit circle with respect to measures determined by observations of the signal. In the recent paper [3], a different approach was used, where properties of Szegő quadrature formulas associated with the zeros of paraorthogonal polynomials with respect to the same measure...

متن کامل

Positive trigonometric quadrature formulas and quadrature on the unit circle

We give several descriptions of positive quadrature formulas which are exact for trigonometric-, respectively, Laurent polynomials of degree less or equal to n − 1 − m, 0 ≤ m ≤ n − 1. A complete and simple description is obtained with the help of orthogonal polynomials on the unit circle. In particular it is shown that the nodes polynomial can be generated by a simple recurrence relation. As a ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • SIAM J. Math. Analysis

دوره 48  شماره 

صفحات  -

تاریخ انتشار 2016